Network Computing and Efficient Algorithms Locality Lower Bounds

Xiang-Yang Li and Xiaohua Xu
School of Computer Science and Technology
University of Science and Technology of China (USTC)

September 1, 2021

Locality Lower Bounds

Locality Lower Bounds

Locality Lower Bounds

Locality Lower Bounds

> Minimization \rightarrow Lower bounds $\rightarrow \Omega(f(n))$ Maximization \rightarrow Upper bounds $\rightarrow O(f(n))$

Locality Lower Bounds

Locality Lower Bounds

> Minimization \rightarrow Lower bounds $\rightarrow \Omega(f(n))$ Maximization \rightarrow Upper bounds $\rightarrow O(f(n))$

Locality Lower Bounds

Each node execute the same code; Different only in terms of neighborhoods.

Locality Lower Bounds

> Minimization \rightarrow Lower bounds $\rightarrow \Omega(f(n))$
> Maximization \rightarrow Upper bounds $\rightarrow O(f(n))$

Recall: Tree Coloring

We count the bit positions from right to left, starting with $0: 0010110000$

Round 1

Grand-parent	0010110000	
Parent	1010010000	$\rightarrow 01010$
Child	0110010000	$\rightarrow 10001$

Recall: Tree Coloring

We count the bit positions from right to left, starting with 0 :
$\log ^{*}(n)$ time ,down to 6 colors \ldots
\ldots and then shift-down: down to 3 colors

Round 1

Grand-parent	0010110000	
Parent	1010010000	$\rightarrow 01010$
Child	0110010000	$\rightarrow 10001$

Ring Coloring

Possible Output:

Problem

- Lower bound of distributed coloring problem:
- Coloring rings (and rooted trees) with 3 or less colors indeed requires $\Omega\left(\log ^{*} n\right)$ rounds.
- How to prove?

Problem

- Lower bound of distributed coloring problem:
- Coloring rings (and rooted trees) with 3 or less colors indeed requires $\Omega\left(\log ^{*} n\right)$ rounds.
- How to prove?
- Assumptions:
- Deterministic, synchronous algorithms.
- Message size and local computations are unbounded.
- Network is a directed ring with n nodes.
- Nodes have unique labels (identifiers) from 1 to n.

Problem

- Lower bound of distributed coloring problem:
- Coloring rings (and rooted trees) with 3 or less colors indeed requires $\Omega\left(\log ^{*} n\right)$ rounds.
- How to prove?
- Assumptions:
- Deterministic, synchronous algorithms.
- Message size and local computations are unbounded.
- Network is a directed ring with n nodes.
- Nodes have unique labels (identifiers) from 1 to n.
- All the conditions above make a lower bound stronger.

Canonical Form for Synchronous Alg.

What can a distributed algorithm do or learn in r rounds?

1. Initially, all nodes only know their own ID
2. As information needs at least r rounds to travel r hops, a node can only learn about r-loop neighborhood!

Canonical Form for Synchronous Alg.

What can a distributed algorithm do or learn in r rounds?

1. Initially, all nodes only know their own ID
2. As information needs at least r rounds to travel r hops, a node can only learn about r-loop neighborhood!

Lemma 8.2

Any deterministic synchronous r-round algorithm can be transformed into Canonical Form:
Algorithm 8.1 Synchronous Algorithm: Canonical Form()
1: In r rounds: send complete initial stat to nodes at distance at most r
2:
\triangleright do all the communication first
3: Compute output based on the complete information about r-neighborhood
4: \triangleright do all the computation in the end

Canonical Form for Synchronous Alg.

What can a distributed algorithm do or learn in r rounds?

1. Initially, all nodes only know their own ID
2. As information needs at least r rounds to travel r hops, a node can only learn about r-loop neighborhood!

Lemma 8.2

Any deterministic synchronous r-round algorithm can be transformed into Canonical Form:
Algorithm 8.1 Synchronous Algorithm: Canonical Form()
1: In r rounds: send complete initial stat to nodes at distance at most r
2:
\triangleright do all the communication first
3: Compute output based on the complete information about r -neighborhood 4: \triangleright do all the computation in the end

In other words: we can emulate any local algorithm by making all communication first and then do all local computations! Why?

Canonical Form for Synchronous Alg.

What can a distributed algorithm do or learn in r rounds?

1. Initially, all nodes only know their own ID
2. As information needs at least r rounds to travel r hops, a node can only learn about r-loop neighborhood!

Lemma 8.2

Any deterministic synchronous r-round algorithm can be transformed into Canonical Form:
Algorithm 8.1 Synchronous Algorithm: Canonical Form()
1: In r rounds: send complete initial stat to nodes at distance at most r
2:
\triangleright do all the communication first
3: Compute output based on the complete information about r -neighborhood 4: \triangleright do all the computation in the end

In other words: we can emulate any local algorithm by making all communication first and then do all local computations! Why?

Example "leader election":

Whether nodes only forward highest ID so far or whether all information is collected first and later selected does not make a difference!

Canonical Form for Synchronous Alg.

We can do all communication forst and then do all local computations!

How to prove this?

Let A be any r-round algorithm.
We can show that the canonical forn algorithm C can compute all possible messages that A may send as well. By induction over distance of nodes ...if we can compute messages of first i rounds in $(r-i+1)$ neighborhood, we have all information to compute first $(i+1)$ round message in $(r-i)$-neighborhood.
So first trivial: Can compute all first messages in r-neighborhood

r-hop view

Definition 8.3(r-hop view).

We call the collection of the initial states of all nodes in the r-neighborhood of a node v the r-hop view of v.

How do r-hop views of our rings look like?
E.g.,1-hop view of 4?

r-hop view

Definition 8.3(r-hop view).

We call the collection of the initial states of all nodes in the r-neighborhood of a node v the r-hop view of v.

How do r-hop views of our rings look like?
E.g.,1-hop view of 4?

r-hop view

Definition 8.3(r-hop view).

We call the collection of the initial states of all nodes in the r-neighborhood of a node v the r-hop view of v.

How do r-hop views of our rings look like?
E.g.,2-hop view of 4?

r-hop view

Definition 8.3(r-hop view).

We call the collection of the initial states of all nodes in the r-neighborhood of a node v the r-hop view of v.

How do r-hop views of our rings look like?
E.g.,2-hop view of 4?

r-hop view

Definition 8.3(r-hop view).

We call the collection of the initial states of all nodes in the r-neighborhood of a node v the r-hop view of v.

How do r-hop views for our rings look like? Generally:
The r-hop view of a ring is a $(2 r+1)$ tuple:

$$
\left(l_{-r}, l_{-r+1}, \ldots, l_{0}, \ldots, l_{r}\right)
$$

where l_{0} is ID/label of considered node v.

r-hop view

Definition 8.3 (r-hop view).

We call the collection of the initial states of all nodes in the r-neighborhood of a node v the r-hop view of v.

How do r-hop views for our rings look like? Generally:
The r-hop view of a ring is a $(2 r+1)$ tuple:

$$
\left(l_{-r}, l_{-r+1}, \ldots, l_{0}, \ldots, l_{r}\right)
$$

where l_{0} is ID/label of considered node v.

Corollary 8.4.

A deterministic r-round algorithm A is a function that maps every possible r-hop view to the set of possible outputs.

Ring Coloring

Corollary 8.4.

A deterministic r-round algorithm A is a function that maps every possible r-hop view to the set of possible outputs.

Ring Coloring

Corollary 8.4.

A deterministic r-round algorithm A is a function that maps every possible r-hop view to the set of possible outputs.

When is a coloring valid?

Ring Coloring

Corollary 8.4.

A deterministic r-round algorithm A is a function that maps every possible r-hop view to the set of possible outputs.

Ring Coloring

Corollary 8.4.

A deterministic r-round algorithm A is a function that maps every possible r-hop view to the set of possible outputs.

$(4,1,2)$ and $(1,2,3)$ are 1 -hop view of two adjacent nodes. So what?

Ring Coloring

Corollary 8.4.

A deterministic r-round algorithm A is a function that maps every possible r-hop view to the set of possible outputs.

When is a coloring valid?

Consider two r-hop views:

$$
\begin{aligned}
& \left(l_{-r}, l_{-r+1}, \ldots, l_{0}, \ldots, l_{r}\right) \\
& \left(l_{-r}^{\prime}, l_{-r+1}^{\prime}, \ldots, l_{0}^{\prime}, \ldots, l_{r}^{\prime}\right)
\end{aligned}
$$

where $l_{i}^{\prime}=l_{i+1}$, for $-r \leq i \leq r-1$ and $l_{i}^{\prime} \neq l_{i+1}$ for $-r \leq i \leq r$, so what? Then the two views can originate from the adjacent nodes in the ring!

Ring Coloring

Corollary 8.4.

A deterministic r-round algorithm A is a function that maps every possible r-hop view to the set of possible outputs.

When is a coloring valid?

Consider two r-hop views:

$$
\begin{array}{r}
\left(l_{-r}, l_{-r+1}, \ldots, l_{0}, \ldots, l_{r}\right) \\
\left(l_{-r}^{\prime}, l_{-r+1}^{\prime}, \ldots, l_{0}^{\prime}, \ldots, l_{r}^{\prime}\right)
\end{array}
$$

where $l_{i}^{\prime}=l_{i+1}$, for $-r \leq i \leq r-1$ and $l_{i}^{\prime} \neq l_{i+1}$ for $-r \leq i \leq r$, so what?
Then the two views can originate from the adjacent nodes in the ring!

So every algorithm needs to assign different colors to the two views!

Neighborhood Graph

- Nodes: any possible neighborhoods
- Edges: conflicting neighborhoods are connected (when?)
- Coloring:
- The same neighborhoods have the same color.
- Conflicting ones with different colors

Neighborhood Graph

- Nodes: any possible neighborhoods
- Edges: conflicting neighborhoods are connected (when?)
- Coloring:
- The same neighborhoods have the same color.
- Conflicting ones with different colors

Definition 8.5 (Neighborhood Graph).

For a given famliy of network graphs G, the r-neighborhood graph $N_{r}(G)$ is defined as follows. The node set of $N_{r}(G)$ is the set of all possible labeled r-neighborhoods (i.e., all possible r-hop views). There is an edge between two labeled r-neighborhoods V_{r} and V_{r}^{\prime} if V_{r} and V_{r}^{\prime} can be the r-hop views of two adjacent nodes.

Lemma 8.6.

For a given family of network graphs G, there is an r-round algorithm that colors graphs of G with c colors iff the chromatic number of the neighborhood graph is $\chi\left(N_{r}(G)\right) \leq c$.

Road Map

Lemma 8.6.

For a given family of network graphs G, there is an r-round algorithm that colors graphs of G with c colors iff the chromatic number of the neighborhood graph is $\chi\left(N_{r}(G)\right) \leq c$.

Road Map

Lemma 8.6.

For a given family of network graphs G, there is an r-round algorithm that colors graphs of G with c colors iff the chromatic number of the neighborhood graph is $\chi\left(N_{r}(G)\right) \leq c$.

How to find a good lower bound with this lemma?
We have to show that $\chi\left(N_{r}(G)\right)$ is small only for a larger \mathbf{r}...

Road Map

Lemma 8.6.

For a given family of network graphs G, there is an r-round algorithm that colors graphs of G with c colors iff the chromatic number of the neighborhood graph is $\chi\left(N_{r}(G)\right) \leq c$.

How to find a good lower bound with this lemma?
We have to show that $\chi\left(N_{r}(G)\right)$ is small only for a larger \mathbf{r}...

So how does $\chi\left(N_{r}(G)\right)$ of a ring look like? For example for our ring graph?

The Neighborhood Graph

r-hop neighborhood graph for ring family ($\mathrm{n}=6$ known)

$$
\chi\left(N_{0}(G)\right)=?
$$

$$
\chi\left(N_{1}(G)\right)=?
$$

The Neighborhood Graph

Instead of directly defining the neighborhood graph for directed rings, we define directed graphs B_{k} that are closely related to the neighborhood graph. The node set of B_{k} contains all k-tuples of increasing node labels $([n]=\{1, \ldots, n\})$:

$$
V\left[B_{k}\right]=\left\{\left(\alpha_{1}, \ldots, \alpha_{k}\right): \alpha_{i} \in[n], i<j \rightarrow \alpha_{i}<\alpha_{j}\right\}
$$

For $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ and $\underline{\beta}=\left(\beta_{1}, \ldots, \beta_{k}\right)$ there is a directed edge from $\underline{\alpha}$ to $\underline{\beta}$ iff

$$
\forall i \in\{1, \ldots, k-1\}: \beta_{i}=\alpha_{i+1}
$$

The Neighborhood Graph

Instead of directly defining the neighborhood graph for directed rings, we define directed graphs B_{k} that are closely related to the neighborhood graph. The node set of B_{k} contains all \mathbf{k}-tuples of increasing node labels $([n]=\{1, \ldots, n\}):$

$$
V\left[B_{k}\right]=\left\{\left(\alpha_{1}, \ldots, \alpha_{k}\right): \alpha_{i} \in[n], i<j \rightarrow \alpha_{i}<\alpha_{j}\right\}
$$

For $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ and $\underline{\beta}=\left(\beta_{1}, \ldots, \beta_{k}\right)$ there is a directed edge from $\underline{\alpha}$ to $\underline{\beta}$ iff

$$
\forall i \in\{1, \ldots, k-1\}: \beta_{i}=\alpha_{i+1}
$$

Lemma 8.7.

Viewed as an undirected graph, the graph $B_{2 r+1}$ is a subgraph of the r-neighborhood graph of directed n-node tings with node lables from $[n]$.

The Neighborhood Graph

Instead of directly defining the neighborhood graph for directed rings, we define directed graphs B_{k} that are closely related to the neighborhood graph. The node set of B_{k} contains all \mathbf{k}-tuples of increasing node labels $([n]=\{1, \ldots, n\}):$

$$
V\left[B_{k}\right]=\left\{\left(\alpha_{1}, \ldots, \alpha_{k}\right): \alpha_{i} \in[n], i<j \rightarrow \alpha_{i}<\alpha_{j}\right\}
$$

For $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ and $\underline{\beta}=\left(\beta_{1}, \ldots, \beta_{k}\right)$ there is a directed edge from $\underline{\alpha}$ to $\underline{\beta}$ iff

$$
\forall i \in\{1, \ldots, k-1\}: \beta_{i}=\alpha_{i+1}
$$

Lemma 8.7.

Viewed as an undirected graph, the graph $B_{2 r+1}$ is a subgraph of the r-neighborhood graph of directed n-node tings with node lables from [n].

Coloring a subgraph is not harder!

Diline Graph

Definition 8.8 (Diline Graph).

The directed line graph (diline graph) $D L(G)$ of a directed graph $G=(V, E)$ is defined as follows. The node set of $D L(G)$ is $V[D L(G)]=E$. There is a directed edge $((w, x),(y, z))$ between $(w, x) \in E$ and $(y, z) \in E$ iff $x=y$, i.e., if the first edge ends where the second one starts.

Diline Graph

Definition 8.8 (Diline Graph).

The directed line graph (diline graph) $D L(G)$ of a directed graph $G=(V, E)$ is defined as follows. The node set of $D L(G)$ is $V[D L(G)]=E$. There is a directed edge $((w, x),(y, z))$ between $(w, x) \in E$ and $(y, z) \in E$ iff $x=y$, i.e., if the first edge ends where the second one starts.

Lemma 8.9.

if $n>k$, the graph B_{k+1} can be defined recursively as follows:

$$
B_{k+1}=D L\left(B_{k}\right)
$$

Diline Graph

Definition 8.8 (Diline Graph).

The directed line graph (diline graph) $D L(G)$ of a directed graph $G=(V, E)$ is defined as follows. The node set of $D L(G)$ is $V[D L(G)]=E$. There is a directed edge $((w, x),(y, z))$ between $(w, x) \in E$ and $(y, z) \in E$ iff $x=y$, i.e., if the first edge ends where the second one starts.

Lemma 8.9.

if $n>k$, the graph B_{k+1} can be defined recursively as follows:

$$
B_{k+1}=D L\left(B_{k}\right) .
$$

Proof. The edges of B_{k} are pairs of k-tuples $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ and $\underline{\beta}=\left(\beta_{1}, \ldots, \beta_{k}\right)$ that satisfy Conditions (8.1) and (8.2). Because the last $k-1$ labels in $\underline{\alpha}$ are equal to the first $k-1$ labels in $\underline{\beta}$, the pair $(\underline{\alpha}, \underline{\beta})$ can be represented by a $(\mathbf{k}+1)$-tuple $\underline{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{k+1}\right)$ with $\bar{\gamma}_{1}=\alpha_{1}, \gamma_{i}=\beta_{i-1}=\alpha_{i}$ for $2 \leq i \leq k$, and $\gamma_{k+1}=\beta_{k}$. Because the labels in $\underline{\alpha}$ and the labels in $\underline{\beta}$ are increasing, the labels in $\underline{\gamma}$ are increasing as well. The two graphs B_{k+1} and $\bar{D} L\left(B_{k}\right)$ therefor habe the same node sets. There is an edge between two nodes $\left(\underline{\alpha}_{1}, \underline{\beta}_{1}\right)$ and $\left(\underline{\alpha}_{2}, \underline{\beta}_{2}\right)$ of $D L\left(B_{k}\right)$ if $\underline{\beta}_{1}=\underline{\alpha}_{2}$. This is equivalent to requiring that the two corresponding $(k+1)$-tuples $\underline{\gamma}_{1}$ and $\underline{\gamma}_{2}$ are neighbors in B_{k+1}, i.e., that the last k labels of $\underline{\gamma}_{1}$ are equal to the first k labels of $\underline{\gamma}_{2}$.

Diline Graph

Lemma 8.10.

For the chromatic numbers $\chi(G)$ and $\chi(D L(G))$ of a directed grapg G and its diline graph, it holds that

$$
\chi(D L(G)) \geq \log _{2}(\chi(G))
$$

Proof. Given a c-coloring of $D L(G)$, we show how to construct a 2^{c} coloring of G. The claim of the lemma then follows because this implies that $\chi(G) \leq 2^{\chi(D L(G))}$.

Assume that we are given a c-coloring of $D L(G)$. A c-coloring of the diline graph $D L(G)$ can be seen as a coloring of the edges of G such that no two adjacent edges have the same color. For a node v of G, let S_{v} be the set of colors of its outgoing edges. Let u and v be two nodes such that G contains a directed edge (u, v) from u to v and let c be the color of (u, v). Clearly, $x \in S_{u}$ because (u, v) is an outgoing edge of u. Because adjacent edges have different colors, no outgoing edge (v, w) of v can have color x. Therefore $x \notin S_{v}$. This implies that $S_{u} \neq S_{v}$. We can therefore use these color sets to obtain a vertex coloring of G, i, e, . the color of u is S_{u} and the color of v is S_{v}. Because the number of possible subsets of $[c]$ is 2^{c}, this yields a 2^{c}-coloring of G.

Theorem 8.12

Lemma 8.11.

For all $n \geq 1, \chi\left(B_{1}\right)=n$. Further, for $n \geq k \geq 2, \chi\left(B_{k}\right) \geq \log ^{(k-1)} n$.

$$
\log ^{*} x=1 \text { if } x \leq 2, \log ^{*} x=1+\min \left\{i: \log ^{(i)} x \leq 2\right\} .
$$

Theorem 8.12

Lemma 8.11.

For all $n \geq 1, \chi\left(B_{1}\right)=n$. Further, for $n \geq k \geq 2, \chi\left(B_{k}\right) \geq \log ^{(k-1)} n$.

$$
\log ^{*} x=1 \text { if } x \leq 2, \log ^{*} x=1+\min \left\{i: \log ^{(i)} x \leq 2\right\}
$$

Proof. For $k=1, B_{k}$ is the complete graph on n nodes with a directed edge from node i to node j iff $i<j$. Therefore, $\chi\left(B_{1}\right)=n$.
For $k>2$, the claim follows by induction and Lemmas 8.9 and 8.10.

Theorem 8.12

Lemma 8.11.

For all $n \geq 1, \chi\left(B_{1}\right)=n$. Further, for $n \geq k \geq 2, \chi\left(B_{k}\right) \geq \log ^{(k-1)} n$.

$$
\log ^{*} x=1 \text { if } x \leq 2, \log ^{*} x=1+\min \left\{i: \log ^{(i)} x \leq 2\right\}
$$

Proof. For $k=1, B_{k}$ is the complete graph on n nodes with a directed edge from node i to node j iff $i<j$. Therefore, $\chi\left(B_{1}\right)=n$.
For $k>2$, the claim follows by induction and Lemmas 8.9 and 8.10.

Theorem 8.12.

Every determinstic, distributed algorithms to color a directed ring with 3 or less colors needs at least $\left(\log ^{*} n\right) / 2-1$ rounds.

Theorem 8.12

Lemma 8.11.

For all $n \geq 1, \chi\left(B_{1}\right)=n$. Further, for $n \geq k \geq 2, \chi\left(B_{k}\right) \geq \log ^{(k-1)} n$.

$$
\log ^{*} x=1 \text { if } x \leq 2, \log ^{*} x=1+\min \left\{i: \log ^{(i)} x \leq 2\right\}
$$

Proof. For $k=1, B_{k}$ is the complete graph on n nodes with a directed edge from node i to node j iff $i<j$. Therefore, $\chi\left(B_{1}\right)=n$.
For $k>2$, the claim follows by induction and Lemmas 8.9 and 8.10.

Theorem 8.12.

Every determinstic, distributed algorithms to color a directed ring with 3 or less colors needs at least $\left(\log ^{*} n\right) / 2-1$ rounds.

We need to show that $\chi\left(B_{2 r+1, n}\right)>3$ for all $r<\left(\log ^{*} n\right) / 2-1$.
We know that $\chi\left(B_{2 r+1, n}\right) \geq \log ^{(2 r)} n$.
And $B_{2 r+1, n}$ is subgraph of neighborhood graph we actually want!
The rest is simple maths...

Remarks

- The neighborhood graph concept can be used more generally to study distributed graph coloring. It can for instance be used to show that with a single round (every node sends its identifier to all neighbors) it is possible to color a graph with $(1+o(1)) \Delta^{2}$ in n colors, and that every one-round algorithm needs at least $\Omega\left(\Delta^{2} / \log ^{2} \Delta+\log \log n\right)$ colors.
- One may also extend the proof to other problems, for instance one may show that a constant approximation of the minimum dominating set problem on unit disk graphs costs at least log-star time.

References

- An alternative proof that omits the neighborhood graph construction:
- Juhana Laurinharju and Jukka Suomela. Brief Announcement: Linials Lower Bound Made Easy. In PODC, 2014.
- The lower bound is also true for randomized algorithms:
- Moni Naor. A Lower Bound on Probabilistic Algorithms for Distributive Ring Coloring. SIAM J. Discrete Math., 1991.
- More substantial lower bounds for a number of combinatorial problems:
- Reuven Bar-Yehuda, Keren Censor-Hillel, and Gregory Schwartzman. A distributed $(2+\varepsilon)$-approximation for vertex cover in $o(\log \delta / \varepsilon \log \log \delta)$ rounds. In arXiv, 2016.
- F. Kuhn, T. Moscibroda, and R. Wattenhofer. What Cannot Be Computed Locally! In PODC, 2004.
- This lower bound technique was adapted to other problems:
- A. Czygrinow, M. Hanckowiak, and W. Wawrzyniak. Fast Distributed Approximations in Planar Graphs. In DISC, 2008.
- Christoph Lenzen and Roger Wattenhofer. Leveraging Linials Locality Limit. In DISC, 2008.
- Surveys:
- Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local Computation: Lower and Upper Bounds. In JACM, 2016.
- Jukka Suomela. Survey of Local Algorithms. http://www.cs.helsinki.fi/local-survey/, 2012.

