
Network Computing and Efficient Algorithms
Locality Lower Bounds

Xiang-Yang Li and Xiaohua Xu

School of Computer Science and Technology
University of Science and Technology of China (USTC)

September 1, 2021

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 1 / 23



Locality Lower Bounds

Locality Lower Bounds

Locality Lower Bounds

Minimization → Lower bounds → Ω(f (n))
Maximization → Upper bounds → O(f (n))

Locality Lower BoundsLocality Lower Bounds

Each node execute the same code;
Different only in terms of neighborhoods.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 2 / 23



Locality Lower Bounds

Locality Lower BoundsLocality Lower Bounds

Minimization → Lower bounds → Ω(f (n))
Maximization → Upper bounds → O(f (n))

Locality Lower BoundsLocality Lower Bounds

Each node execute the same code;
Different only in terms of neighborhoods.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 2 / 23



Locality Lower Bounds

Locality Lower BoundsLocality Lower Bounds

Minimization → Lower bounds → Ω(f (n))
Maximization → Upper bounds → O(f (n))

Locality Lower Bounds

Locality Lower Bounds

Each node execute the same code;
Different only in terms of neighborhoods.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 2 / 23



Locality Lower Bounds

Locality Lower BoundsLocality Lower Bounds

Minimization → Lower bounds → Ω(f (n))
Maximization → Upper bounds → O(f (n))

Locality Lower BoundsLocality Lower Bounds

Each node execute the same code;
Different only in terms of neighborhoods.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 2 / 23



Recall: Tree Coloring

1010010000

0110010000

0010110000

We count the bit positions
from right to left, starting with 0

Round 1

Grand-parent 0010110000
Parent 1010010000 → 01010
Child 0110010000 → 10001

log∗(n) time ,down to 6 colors . . .

. . . and then shift-down: down to 3 colors

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 3 / 23



Recall: Tree Coloring

1010010000

0110010000

0010110000

We count the bit positions
from right to left, starting with 0

Round 1

Grand-parent 0010110000
Parent 1010010000 → 01010
Child 0110010000 → 10001

log∗(n) time ,down to 6 colors . . .

. . . and then shift-down: down to 3 colors

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 3 / 23



Ring Coloring

1

4

2

3

5

6

Possible Output:

Algorithm for trees can be adapted!

log∗(n) time for 3 colors.

Can we do
even

faster?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 4 / 23



Problem

Lower bound of distributed coloring problem:
Coloring rings (and rooted trees) with 3 or less colors indeed
requires Ω(log∗ n) rounds.
How to prove?

Assumptions:
Deterministic, synchronous algorithms.
Message size and local computations are unbounded.
Network is a directed ring with n nodes.
Nodes have unique labels (identifiers) from 1 to n.

All the conditions above make a lower bound stronger.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 5 / 23



Problem

Lower bound of distributed coloring problem:
Coloring rings (and rooted trees) with 3 or less colors indeed
requires Ω(log∗ n) rounds.
How to prove?

Assumptions:
Deterministic, synchronous algorithms.
Message size and local computations are unbounded.
Network is a directed ring with n nodes.
Nodes have unique labels (identifiers) from 1 to n.

All the conditions above make a lower bound stronger.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 5 / 23



Problem

Lower bound of distributed coloring problem:
Coloring rings (and rooted trees) with 3 or less colors indeed
requires Ω(log∗ n) rounds.
How to prove?

Assumptions:
Deterministic, synchronous algorithms.
Message size and local computations are unbounded.
Network is a directed ring with n nodes.
Nodes have unique labels (identifiers) from 1 to n.

All the conditions above make a lower bound stronger.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 5 / 23



Canonical Form for Synchronous Alg.
What can a distributed algorithm do or learn in r rounds?

1. Initially, all nodes only know their own ID

2. As information needs at least r rounds to travel r hops, a node can only
learn about r-loop neighborhood!

Lemma 8.2
Any deterministic synchronous r-round algorithm can be transformed into Canonical
Form:
ALGORITHM 8.1 SYNCHRONOUS ALGORITHM: CANONICAL FORM()
1: In r rounds: send complete initial stat to nodes at distance at most r
2: . do all the communication first
3: Compute output based on the complete information about r-neighborhood
4: . do all the computation in the end

In other words: we can emulate any local algorithm by making all commu-
nication first and then do all local computations! Why?

Example ”leader election”:
Whether nodes only forward highest ID so far or whether all information is collected first
and later selected does not make a difference!

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 6 / 23



Canonical Form for Synchronous Alg.
What can a distributed algorithm do or learn in r rounds?

1. Initially, all nodes only know their own ID

2. As information needs at least r rounds to travel r hops, a node can only
learn about r-loop neighborhood!

Lemma 8.2
Any deterministic synchronous r-round algorithm can be transformed into Canonical
Form:
ALGORITHM 8.1 SYNCHRONOUS ALGORITHM: CANONICAL FORM()
1: In r rounds: send complete initial stat to nodes at distance at most r
2: . do all the communication first
3: Compute output based on the complete information about r-neighborhood
4: . do all the computation in the end

In other words: we can emulate any local algorithm by making all commu-
nication first and then do all local computations! Why?

Example ”leader election”:
Whether nodes only forward highest ID so far or whether all information is collected first
and later selected does not make a difference!

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 6 / 23



Canonical Form for Synchronous Alg.
What can a distributed algorithm do or learn in r rounds?

1. Initially, all nodes only know their own ID

2. As information needs at least r rounds to travel r hops, a node can only
learn about r-loop neighborhood!

Lemma 8.2
Any deterministic synchronous r-round algorithm can be transformed into Canonical
Form:
ALGORITHM 8.1 SYNCHRONOUS ALGORITHM: CANONICAL FORM()
1: In r rounds: send complete initial stat to nodes at distance at most r
2: . do all the communication first
3: Compute output based on the complete information about r-neighborhood
4: . do all the computation in the end

In other words: we can emulate any local algorithm by making all commu-
nication first and then do all local computations! Why?

Example ”leader election”:
Whether nodes only forward highest ID so far or whether all information is collected first
and later selected does not make a difference!

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 6 / 23



Canonical Form for Synchronous Alg.
What can a distributed algorithm do or learn in r rounds?

1. Initially, all nodes only know their own ID

2. As information needs at least r rounds to travel r hops, a node can only
learn about r-loop neighborhood!

Lemma 8.2
Any deterministic synchronous r-round algorithm can be transformed into Canonical
Form:
ALGORITHM 8.1 SYNCHRONOUS ALGORITHM: CANONICAL FORM()
1: In r rounds: send complete initial stat to nodes at distance at most r
2: . do all the communication first
3: Compute output based on the complete information about r-neighborhood
4: . do all the computation in the end

In other words: we can emulate any local algorithm by making all commu-
nication first and then do all local computations! Why?

Example ”leader election”:
Whether nodes only forward highest ID so far or whether all information is collected first
and later selected does not make a difference!

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 6 / 23



Canonical Form for Synchronous Alg.

We can do all communication forst and then do all local computations!

How to prove this?
Let A be any r-round algorithm.
We can show that the canonical forn
algorithm C can compute all possible
messages that A may send as well.
By induction over distance of nodes
. . . if we can compute messages
of first i rounds in (r− i + 1)-
neighborhood, we have all infor-
mation to compute first (i+1) round
message in (r− i)-neighborhood.

So first trivial: Can compute all first

messages in r-neighborhood

r

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 7 / 23



r-hop view

Definition 8.3(r-hop view).
We call the collection of the initial states of all nodes in the r-neighborhood
of a node v the r-hop view of v.

1

4

2

3

5

6

How do r-hop views of our rings look like?
E.g.,1-hop view of 4?

1

4

2

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 8 / 23



r-hop view

Definition 8.3(r-hop view).
We call the collection of the initial states of all nodes in the r-neighborhood
of a node v the r-hop view of v.

1

4

2

3

5

6

How do r-hop views of our rings look like?
E.g.,1-hop view of 4?

1

4

2

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 8 / 23



r-hop view

Definition 8.3(r-hop view).
We call the collection of the initial states of all nodes in the r-neighborhood
of a node v the r-hop view of v.

1

4

2

3

5

6

How do r-hop views of our rings look like?
E.g.,2-hop view of 4?

1

4

2

3

5

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 9 / 23



r-hop view

Definition 8.3(r-hop view).
We call the collection of the initial states of all nodes in the r-neighborhood
of a node v the r-hop view of v.

1

4

2

3

5

6

How do r-hop views of our rings look like?
E.g.,2-hop view of 4?

1

4

2

3

5

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 9 / 23



r-hop view

Definition 8.3(r-hop view).
We call the collection of the initial states of all nodes in the r-neighborhood
of a node v the r-hop view of v.

r-hop view

1

4

2

3

5

6

How do r-hop views for our rings look like?
Generally:
The r-hop view of a ring is a (2r+1) tuple:

(l−r, l−r+1, . . . , l0, . . . , lr)

where l0 is ID/label of considered node v.

Corollary 8.4.
A deterministic r-round algorithm A is a function that maps every possible
r-hop view to the set of possible outputs.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 10 / 23



r-hop view

Definition 8.3(r-hop view).
We call the collection of the initial states of all nodes in the r-neighborhood
of a node v the r-hop view of v.

r-hop view

1

4

2

3

5

6

How do r-hop views for our rings look like?
Generally:
The r-hop view of a ring is a (2r+1) tuple:

(l−r, l−r+1, . . . , l0, . . . , lr)

where l0 is ID/label of considered node v.

Corollary 8.4.
A deterministic r-round algorithm A is a function that maps every possible
r-hop view to the set of possible outputs.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 10 / 23



Ring Coloring

Corollary 8.4.
A deterministic r-round algorithm A is a function that maps every possible
r-hop view to the set of possible outputs.

When is a coloring valid?
1

2

3

4

1-hop view of 1

1

2

3

4

1-hop view of 2

(4,1,2) and (1,2,3) are 1-hop view of two adjacent nodes. So what?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 11 / 23



Ring Coloring

Corollary 8.4.
A deterministic r-round algorithm A is a function that maps every possible
r-hop view to the set of possible outputs.

When is a coloring valid?

1

2

3

4

1-hop view of 1

1

2

3

4

1-hop view of 2

(4,1,2) and (1,2,3) are 1-hop view of two adjacent nodes. So what?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 11 / 23



Ring Coloring

Corollary 8.4.
A deterministic r-round algorithm A is a function that maps every possible
r-hop view to the set of possible outputs.

When is a coloring valid?
1

2

3

4

1-hop view of 1

1

2

3

4

1-hop view of 2

(4,1,2) and (1,2,3) are 1-hop view of two adjacent nodes. So what?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 11 / 23



Ring Coloring

Corollary 8.4.
A deterministic r-round algorithm A is a function that maps every possible
r-hop view to the set of possible outputs.

When is a coloring valid?
1

2

3

4

1-hop view of 1

1

2

3

4

1-hop view of 2

(4,1,2) and (1,2,3) are 1-hop view of two adjacent nodes. So what?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 11 / 23



Ring Coloring

Corollary 8.4.
A deterministic r-round algorithm A is a function that maps every possible
r-hop view to the set of possible outputs.

When is a coloring valid?
Consider two r-hop views:

(l−r, l−r+1, . . . , l0, . . . , lr)

(l′−r, l
′
−r+1, . . . , l

′
0, . . . , l

′
r)

where l′i = li+1, for −r ≤ i≤ r−1 and l′i 6= li+1 for −r ≤ i≤ r, so what?

Then the two views can originate from the adjacent nodes in the ring!

So every algorithm needs to assign different colors to the two views!

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 12 / 23



Ring Coloring

Corollary 8.4.
A deterministic r-round algorithm A is a function that maps every possible
r-hop view to the set of possible outputs.

When is a coloring valid?
Consider two r-hop views:

(l−r, l−r+1, . . . , l0, . . . , lr)

(l′−r, l
′
−r+1, . . . , l

′
0, . . . , l

′
r)

where l′i = li+1, for −r ≤ i≤ r−1 and l′i 6= li+1 for −r ≤ i≤ r, so what?

Then the two views can originate from the adjacent nodes in the ring!

So every algorithm needs to assign different colors to the two views!

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 12 / 23



Neighborhood Graph

Nodes: any possible neighborhoods
Edges: conflicting neighborhoods are connected (when?)
Coloring:

The same neighborhoods have the same color.
Conflicting ones with different colors

1

24

1

2

3

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 13 / 23



Neighborhood Graph

Nodes: any possible neighborhoods
Edges: conflicting neighborhoods are connected (when?)
Coloring:

The same neighborhoods have the same color.
Conflicting ones with different colors

Definition 8.5 (Neighborhood Graph).
For a given famliy of network graphs G, the r-neighborhood graph Nr(G)
is defined as follows. The node set of Nr(G) is the set of all possible labeled
r-neighborhoods (i.e., all possible r-hop views). There is an edge between
two labeled r-neighborhoods Vr and V ′r if Vr and V ′r can be the r-hop views
of two adjacent nodes.

Lemma 8.6.
For a given family of network graphs G, there is an r-round algorithm that
colors graphs of G with c colors iff the chromatic number of the
neighborhood graph is χ(Nr(G))≤ c.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 14 / 23



Road Map

Lemma 8.6.
For a given family of network graphs G, there is an r-round algorithm that
colors graphs of G with c colors iff the chromatic number of the
neighborhood graph is χ(Nr(G))≤ c.

How to find a good lower bound with this lemma?
We have to show that χ(Nr(G)) is small only for a larger r . . .

1

4

2

3

5

6

So how does χ(Nr(G)) of a ring look like?
For example for our ring graph?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 15 / 23



Road Map

Lemma 8.6.
For a given family of network graphs G, there is an r-round algorithm that
colors graphs of G with c colors iff the chromatic number of the
neighborhood graph is χ(Nr(G))≤ c.

How to find a good lower bound with this lemma?
We have to show that χ(Nr(G)) is small only for a larger r . . .

1

4

2

3

5

6

So how does χ(Nr(G)) of a ring look like?
For example for our ring graph?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 15 / 23



Road Map

Lemma 8.6.
For a given family of network graphs G, there is an r-round algorithm that
colors graphs of G with c colors iff the chromatic number of the
neighborhood graph is χ(Nr(G))≤ c.

How to find a good lower bound with this lemma?
We have to show that χ(Nr(G)) is small only for a larger r . . .

1

4

2

3

5

6

So how does χ(Nr(G)) of a ring look like?
For example for our ring graph?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 15 / 23



The Neighborhood Graph

r-hop neighborhood graph for ring family (n=6 known)
1

6

5
4

2

3
χ(N0(G)) =?

563

635
156

324
632

634

631156
415

241
324

342

χ(N1(G)) =?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 16 / 23



The Neighborhood Graph

Instead of directly defining the neighborhood graph for directed rings, we
define directed graphs Bk that are closely related to the neighborhood graph.
The node set of Bk contains all k-tuples of increasing node labels
([n] = {1, . . . ,n}):

V[Bk] = {(α1, . . . ,αk) : αi ∈ [n], i < j→ αi < αj}

For α = (α1, . . . ,αk) and β = (β1, . . . ,βk) there is a directed edge from α to
β iff

∀i ∈ {1, . . . ,k−1} : βi = αi+1.

B2 (n = 4)

1313 13

23 24 34

B3 (n = 4)

123 124

134 234

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 17 / 23



The Neighborhood Graph

Instead of directly defining the neighborhood graph for directed rings, we
define directed graphs Bk that are closely related to the neighborhood graph.
The node set of Bk contains all k-tuples of increasing node labels
([n] = {1, . . . ,n}):

V[Bk] = {(α1, . . . ,αk) : αi ∈ [n], i < j→ αi < αj}

For α = (α1, . . . ,αk) and β = (β1, . . . ,βk) there is a directed edge from α to
β iff

∀i ∈ {1, . . . ,k−1} : βi = αi+1.

Lemma 8.7.
Viewed as an undirected graph, the graph B2r+1 is a subgraph of the
r-neighborhood graph of directed n-node tings with node lables from [n].

Coloring a subgraph is not harder!

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 18 / 23



The Neighborhood Graph

Instead of directly defining the neighborhood graph for directed rings, we
define directed graphs Bk that are closely related to the neighborhood graph.
The node set of Bk contains all k-tuples of increasing node labels
([n] = {1, . . . ,n}):

V[Bk] = {(α1, . . . ,αk) : αi ∈ [n], i < j→ αi < αj}

For α = (α1, . . . ,αk) and β = (β1, . . . ,βk) there is a directed edge from α to
β iff

∀i ∈ {1, . . . ,k−1} : βi = αi+1.

Lemma 8.7.
Viewed as an undirected graph, the graph B2r+1 is a subgraph of the
r-neighborhood graph of directed n-node tings with node lables from [n].

Coloring a subgraph is not harder!

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 18 / 23



Diline Graph

Definition 8.8 (Diline Graph).

The directed line graph (diline graph) DL(G) of a directed graph G = (V,E) is
defined as follows. The node set of DL(G) is V[DL(G)] = E. There is a directed edge
((w,x),(y,z)) between (w,x) ∈ E and (y,z) ∈ E iff x = y, i.e., if the first edge ends
where the second one starts.

Lemma 8.9.
if n > k, the graph Bk+1 can be defined recursively as follows:

Bk+1 = DL(Bk).

Proof. The edges of Bk are pairs of k-tuples α = (α1, . . . ,αk) and β = (β1, . . . ,βk)
that satisfy Conditions (8.1) and (8.2). Because the last k−1 labels in α are equal to
the first k−1 labels in β , the pair (α,β ) can be represented by a (k+1)-tuple
γ = (γ1, . . . ,γk+1) with γ1 = α1, γi = βi−1 = αi for 2≤ i≤ k, and γk+1 = βk. Because
the labels in α and the labels in β are increasing, the labels in γ are increasing as
well. The two graphs Bk+1 and DL(Bk) therefor habe the same node sets. There is an
edge between two nodes (α1,β 1) and (α2,β 2) of DL(Bk) if β 1 = α2. This is
equivalent to requiring that the two corresponding (k+1)-tuples γ1 and γ2 are
neighbors in Bk+1,i.e., that the last k labels of γ1 are equal to the first k labels of γ2.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 19 / 23



Diline Graph

Definition 8.8 (Diline Graph).

The directed line graph (diline graph) DL(G) of a directed graph G = (V,E) is
defined as follows. The node set of DL(G) is V[DL(G)] = E. There is a directed edge
((w,x),(y,z)) between (w,x) ∈ E and (y,z) ∈ E iff x = y, i.e., if the first edge ends
where the second one starts.

Lemma 8.9.
if n > k, the graph Bk+1 can be defined recursively as follows:

Bk+1 = DL(Bk).

Proof. The edges of Bk are pairs of k-tuples α = (α1, . . . ,αk) and β = (β1, . . . ,βk)
that satisfy Conditions (8.1) and (8.2). Because the last k−1 labels in α are equal to
the first k−1 labels in β , the pair (α,β ) can be represented by a (k+1)-tuple
γ = (γ1, . . . ,γk+1) with γ1 = α1, γi = βi−1 = αi for 2≤ i≤ k, and γk+1 = βk. Because
the labels in α and the labels in β are increasing, the labels in γ are increasing as
well. The two graphs Bk+1 and DL(Bk) therefor habe the same node sets. There is an
edge between two nodes (α1,β 1) and (α2,β 2) of DL(Bk) if β 1 = α2. This is
equivalent to requiring that the two corresponding (k+1)-tuples γ1 and γ2 are
neighbors in Bk+1,i.e., that the last k labels of γ1 are equal to the first k labels of γ2.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 19 / 23



Diline Graph

Definition 8.8 (Diline Graph).

The directed line graph (diline graph) DL(G) of a directed graph G = (V,E) is
defined as follows. The node set of DL(G) is V[DL(G)] = E. There is a directed edge
((w,x),(y,z)) between (w,x) ∈ E and (y,z) ∈ E iff x = y, i.e., if the first edge ends
where the second one starts.

Lemma 8.9.
if n > k, the graph Bk+1 can be defined recursively as follows:

Bk+1 = DL(Bk).

Proof. The edges of Bk are pairs of k-tuples α = (α1, . . . ,αk) and β = (β1, . . . ,βk)
that satisfy Conditions (8.1) and (8.2). Because the last k−1 labels in α are equal to
the first k−1 labels in β , the pair (α,β ) can be represented by a (k+1)-tuple
γ = (γ1, . . . ,γk+1) with γ1 = α1, γi = βi−1 = αi for 2≤ i≤ k, and γk+1 = βk. Because
the labels in α and the labels in β are increasing, the labels in γ are increasing as
well. The two graphs Bk+1 and DL(Bk) therefor habe the same node sets. There is an
edge between two nodes (α1,β 1) and (α2,β 2) of DL(Bk) if β 1 = α2. This is
equivalent to requiring that the two corresponding (k+1)-tuples γ1 and γ2 are
neighbors in Bk+1,i.e., that the last k labels of γ1 are equal to the first k labels of γ2.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 19 / 23



Diline Graph

Lemma 8.10.
For the chromatic numbers χ(G) and χ(DL(G)) of a directed grapg G and its diline
graph, it holds that

χ(DL(G))≥ log2(χ(G)).

Proof. Given a c-coloring of DL(G), we show how to construct a 2c coloring of G.
The claim of the lemma then follows because this implies that χ(G)≤ 2χ(DL(G)).

Assume that we are given a c-coloring of DL(G). A c-coloring of the diline
graph DL(G) can be seen as a coloring of the edges of G such that no two adjacent
edges have the same color. For a node v of G, let Sv be the set of colors of its
outgoing edges. Let u and v be two nodes such that G contains a directed edge (u,v)
from u to v and let c be the color of (u,v). Clearly, x ∈ Su because (u,v) is an
outgoing edge of u. Because adjacent edges have different colors, no outgoing edge
(v,w) of v can have color x. Therefore x /∈ Sv. This implies that Su 6= Sv. We can
therefore use these color sets to obtain a vertex coloring of G, i,e,. the color of u is Su
and the color of v is Sv. Because the number of possible subsets of [c] is 2c, this
yields a 2c-coloring of G.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 20 / 23



Theorem 8.12

Lemma 8.11.

For all n≥ 1, χ(B1) = n. Further, for n≥ k ≥ 2, χ(Bk)≥ log(k−1) n.

log∗ x = 1 if x≤ 2, log∗ x = 1+min{i : log(i) x≤ 2}.

Proof. For k = 1, Bk is the complete graph on n nodes with a directed edge
from node i to node j iff i < j. Therefore, χ(B1) = n.
For k > 2, the claim follows by induction and Lemmas 8.9 and 8.10.

Theorem 8.12.
Every determinstic, distributed algorithms to color a directed ring with 3 or
less colors needs at least (log∗ n)/2−1 rounds.

We need to show that χ(B2r+1,n)> 3 for all r < (log∗ n)/2−1.
We know that χ(B2r+1,n)≥ log(2r) n.
And B2r+1,n is subgraph of neighborhood graph we actually want!
The rest is simple maths. . .

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 21 / 23



Theorem 8.12

Lemma 8.11.

For all n≥ 1, χ(B1) = n. Further, for n≥ k ≥ 2, χ(Bk)≥ log(k−1) n.

log∗ x = 1 if x≤ 2, log∗ x = 1+min{i : log(i) x≤ 2}.
Proof. For k = 1, Bk is the complete graph on n nodes with a directed edge
from node i to node j iff i < j. Therefore, χ(B1) = n.
For k > 2, the claim follows by induction and Lemmas 8.9 and 8.10.

Theorem 8.12.
Every determinstic, distributed algorithms to color a directed ring with 3 or
less colors needs at least (log∗ n)/2−1 rounds.

We need to show that χ(B2r+1,n)> 3 for all r < (log∗ n)/2−1.
We know that χ(B2r+1,n)≥ log(2r) n.
And B2r+1,n is subgraph of neighborhood graph we actually want!
The rest is simple maths. . .

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 21 / 23



Theorem 8.12

Lemma 8.11.

For all n≥ 1, χ(B1) = n. Further, for n≥ k ≥ 2, χ(Bk)≥ log(k−1) n.

log∗ x = 1 if x≤ 2, log∗ x = 1+min{i : log(i) x≤ 2}.
Proof. For k = 1, Bk is the complete graph on n nodes with a directed edge
from node i to node j iff i < j. Therefore, χ(B1) = n.
For k > 2, the claim follows by induction and Lemmas 8.9 and 8.10.

Theorem 8.12.
Every determinstic, distributed algorithms to color a directed ring with 3 or
less colors needs at least (log∗ n)/2−1 rounds.

We need to show that χ(B2r+1,n)> 3 for all r < (log∗ n)/2−1.
We know that χ(B2r+1,n)≥ log(2r) n.
And B2r+1,n is subgraph of neighborhood graph we actually want!
The rest is simple maths. . .

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 21 / 23



Theorem 8.12

Lemma 8.11.

For all n≥ 1, χ(B1) = n. Further, for n≥ k ≥ 2, χ(Bk)≥ log(k−1) n.

log∗ x = 1 if x≤ 2, log∗ x = 1+min{i : log(i) x≤ 2}.
Proof. For k = 1, Bk is the complete graph on n nodes with a directed edge
from node i to node j iff i < j. Therefore, χ(B1) = n.
For k > 2, the claim follows by induction and Lemmas 8.9 and 8.10.

Theorem 8.12.
Every determinstic, distributed algorithms to color a directed ring with 3 or
less colors needs at least (log∗ n)/2−1 rounds.

We need to show that χ(B2r+1,n)> 3 for all r < (log∗ n)/2−1.
We know that χ(B2r+1,n)≥ log(2r) n.
And B2r+1,n is subgraph of neighborhood graph we actually want!
The rest is simple maths. . .

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 21 / 23



Remarks

The neighborhood graph concept can be used more generally to
study distributed graph coloring. It can for instance be used to
show that with a single round (every node sends its identifier to
all neighbors) it is possible to color a graph with (1+o(1))∆2 in
n colors, and that every one-round algorithm needs at least
Ω(∆2/ log2

∆+ log logn) colors.

One may also extend the proof to other problems, for instance
one may show that a constant approximation of the minimum
dominating set problem on unit disk graphs costs at least log-star
time.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 22 / 23



References

An alternative proof that omits the neighborhood graph construction:
Juhana Laurinharju and Jukka Suomela. Brief Announcement: Linials Lower Bound Made Easy. In PODC,
2014.

The lower bound is also true for randomized algorithms:
Moni Naor. A Lower Bound on Probabilistic Algorithms for Distributive Ring Coloring. SIAM J. Discrete
Math., 1991.

More substantial lower bounds for a number of combinatorial problems:
Reuven Bar-Yehuda, Keren Censor-Hillel, and Gregory Schwartzman. A distributed (2+ ε)-approximation
for vertex cover in o(logδ/ε log logδ ) rounds. In arXiv, 2016.
F. Kuhn, T. Moscibroda, and R. Wattenhofer. What Cannot Be Computed Locally! In PODC, 2004.

This lower bound technique was adapted to other problems:
A. Czygrinow, M. Hanckowiak, and W. Wawrzyniak. Fast Distributed Approximations in Planar Graphs. In
DISC, 2008.
Christoph Lenzen and Roger Wattenhofer. Leveraging Linials Locality Limit. In DISC, 2008.

Surveys:
Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local Computation: Lower and Upper Bounds.
In JACM, 2016.
Jukka Suomela. Survey of Local Algorithms. http://www.cs.helsinki.fi/local-survey/, 2012.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 23 / 23


